

American Institute of Aeronautics and Astronautics

1

Streamlining the Design Tradespace for

Earth Imaging Constellations

Sreeja Nag1,

NASA Goddard Space Flight Center, Greenbelt, Maryland 20771

Bay Area Environmental Research Institute, Moffet Field, California 94040

Steven P. Hughes2 and Jacqueline J. Le Moigne3

NASA Goddard Space Flight Center, Greenbelt, Maryland 20771

Abstract: Distributed Spacecraft Missions (DSMs) are gaining momentum in their application

to Earth Observation (EO) missions owing to their unique ability to increase observation

sampling in spatial, spectral, angular and temporal dimensions simultaneously. DSM design

includes a much larger number of variables than its monolithic counterpart, therefore, Model-

Based Systems Engineering (MBSE) has been often used for preliminary mission concept

designs, to understand the trade-offs and interdependencies among the variables. MBSE

models are complex because the various objectives a DSM is expected to achieve are almost

always conflicting, non-linear and rarely analytical. NASA Goddard Space Flight Center is

developing a pre-Phase A tool called “Trade-space Analysis Tool for Constellations” (TAT-C)

to initiate constellation mission design. The tool will allow users to explore the tradespace

between various performance, cost and risk metrics (as a function of their science mission)

and select Pareto optimal architectures that meet their requirements. This paper focuses on

the tradespace search and how it can be streamlined by combining physical rules, as well as

well-designed orbit and coverage computations, thus yielding significant speed-ups. Two use

cases are shown as representative examples of the utility of TAT-C generated trades, and

results are preliminarily validated against AGI’s Systems Tool Kit.

I. Introduction

ISTRIBUTED Spacecraft Missions (DSMs) are becoming popular in government (e.g. NASA’s Earth Science

Technology Office 2030 Science Vision envisions ‘distributed observations’ and formation flight), academia

(e.g. Europe’s QB50 mission) and industry (e.g. Planet Labs, Google Terra Bella) to address the need for repeated,

global measurements for Earth observations, monitoring and quick response. NASA’s decadal surveys or their mid-

term assessments have called for the consideration of DSMs in areas of Earth science, Astrophysics, Heliophysics and

Planetary science.

Designing space systems is not only technically challenging but also involves making hundreds of decisions early in

the design cycle for allocating limited resources across the system and optimizing performance and cost. EO

performance can be simplistically represented by spatial resolution, spatial range (swath, coverage), spectral resolution

(wavelength bandwidth), spectral range (spectrum covered), angular resolution (number of view and solar illumination

angles for the same image), angular range (spread of those angles), temporal range (mission lifetime), temporal

resolution (repeat or revisit time), radiometric range (number of bits) and radiometric resolution (bits, signal to noise

ratio). Distributed systems have all the trades associated with monolithic systems and more associated with the

network. Extra design variables include but are not restricted to the number of satellites and their individual masses,

their orbits and inter-satellite spacing, existence and nature of inter-satellite communication and downlink schedules.

These variables directly impact performance and cost. Performance variables, as defined, can be mutually conflicting

across the spatial, spectral, temporal, angular and radiometric dimensions and within each dimension. For example,

most earth observation satellites are placed in repeat ground track orbits so that the same point on the Earth is revisited

regularly and frequently. Obviously, more frequent revisits imply that the rotation of the Earth and the orbit has to be

1 Research Engineer, N202 Rm 101, NASA Ames Research Center, Moffet Field, CA 94040 and AIAA Member.
2 Aerospace Engineer, Navigation and Mission Design Branch, NASA Goddard Space Flight Center, MD 20771.
3Assistant Chief of Technology, Software Engineering Division, NASA Goddard Space Flight Center, MD 20771.

D

https://ntrs.nasa.gov/search.jsp?R=20180006450 2019-05-01T03:10:43+00:00Z

American Institute of Aeronautics and Astronautics

2

adjusted in such a way that the satellite comes back to the same spot frequently, and as a result has less time to visit

similar spots on other longitudes. Therefore, global spatial coverage or spatial range and temporal resolution are

conflicting metrics. Both can be improved by increasing the swath of the satellite or the size of any instantaneous

ground image. However, for a given number of pixels in an image, increasing its size or swath with increases the size

of the pixels and coarsens resolution. Therefore, spatial range and temporal resolution are both conflicting metrics

with respect to spatial resolution. Design variables need to be permuted to consider architectures that trade these

metrics for an optimal design.

Previous work has demonstrated preliminary results using MATLAB and AGI’s Satellite Tool Kit software, for

computing angular, spatial and temporal metrics across hundreds or thousands of architectures spanning orbital and

instrument design variables1. This paper describes how a combination of tradespace search rules and modeled orbits

balance accuracy and performance and yield optimal results, while significantly reducing the computation time.

Within Trade-space Analysis Tool for Constellations (TAT-C, [9]), designed at NASA Goddard Space Flight Center,

this is achieved through a Tradespace Search Iterator, also called Executive Driver, in collaboration with the Orbit &

Coverage and the Reduction & Metrics modules also included in TAT-C. TAT-C will provide a framework that

facilitates DSM Pre-Phase A investigations and optimizes DSM designs with respect to a-priori Science goals. This

paper focuses only on the imaging concept of operations that will be included in TAT-C.

II. Overview of the Tradespace Search Iterator

Overall, TAT-C guides users who have a preliminary Earth imaging mission concept, occultation or bistatic radar

missions and would like to understand how the performance of a constellation of such instruments/spacecraft would

depend on their number, ways of arrangement, launch schedule and so on. Figure 1 shows how the Executive Driver

interfaces with the other modules of the TAT-C tool.

Once the user has entered his inputs through the TAT-C GUI, the Executive Driver, henceforth called ED, picks up

the key-value pairs of all the user inputs through a JSON file. The ED then uses physical equations as well as sizing

numbers and mission parameters available from the Knowledge Base, henceforth called KB, to perform a sanity check

on the user inputs and check interdependent reasonableness between mass, power, volume of the payload, launch

vehicle and ground station preferences, satellite number bounds, etc. against points of interest required to be covered,

spectral bands needed, etc. The ED also checks reasonableness of the inputs requested: Swath or Field of View (FOV),

instantaneous FOV or ground sample distance (GSD), downlink horizon, amount of data expected to be collected,

payload mass/volume/power against spatio-temporal metric bounds, using physical equations. If any combination of

user inputs is deemed impossible, the ED notifies the user via the GUI and allows him or her to change the input

values.

Once all the user inputs have been validated, the ED permutes different combination of design variable values to

generate a full factorial set of architectures. Specifically, the design variables considered so far are Constellation types,

number of satellites, field of view (along track and cross track) of the imaging sensor altitude and inclination spread

within user bounds, spread of the initial right ascension of the ascending node (RAAN) and mean anomaly (MA) of

every satellite as a function of the type of constellation, initial eccentricity and perigee spread per satellite, frequency

of constellation maintenance, ground station options and combinations, communication bands used for data downlink

and launch vehicle options and schedules. For any level of variable combination, the ED automatically streamlines

the next level of acceptable bounds in the design tradespace. For example, based on the revisit requirements set by the

user and a specific combination of FOV and altitude combination, the ED computes the maximum and minimum

number of satellites required to avoid looping over all possible combinations. Once the architectures have been

formulated, the ED requests the KB for any saved results corresponding to any of the architectures or individual

satellite orbits so that they do not have to be re-run. For the architectures that are new, the ED requests the reduction

and metrics module, henceforth called RM to evaluate them. The RM cycles through each architecture and requests

the orbit and coverage module, henceforth called OC, to propagate the individual satellites per architecture step by

step by giving OC the satellite’s initial conditions, propagation time step, grid point size, lifetime, mass and volume

and propagation fidelity. Further details will be explained in Section II.B. Unique satellite specifications and

ephemeris across all architectures are stored as individual JSON files and the corresponding coverage statistics in

memory. The RM then combines the coverage statistics over the satellites in every architecture, to compute the overall

DSM performance metrics for that architecture. The ED also requests the Cost and Risk module, henceforth called

American Institute of Aeronautics and Astronautics

3

CR, to calculate its metrics per architecture given architecture specifications such as maintenance frequency, total

mass/volume/power, satellite initial conditions, launch vehicle options, ground station specifications, etc.

Figure 1: The role of the Executive Driver within the Tradespace Analysis Tool. The text in boxes highlights

their high level functionality and the arrows show inter-module information flow. The modules in pink are

programmed in Python, those in green in C++ and the ones in grey have not been discussed in this paper.

So far, all the architectures and metrics are generated based on only physical formulae and analytical computations.

The ED may also use scaling tables so that multiple satellite architectures can be de-scoped based on the performance

metrics calculated from single satellite architectures. Such scaling tables would database the numerical dependence of

output metrics such as revisit time or percentage globe covered on satellite number, for a large number of combinations

of variables such as satellite altitude, FOV or inclination. For example, to further downselect among architectures, the

ED can request the OC and CR modules to run a full scenario of one satellite architectures across combinations of all

other variables. It can then use the output values of these scenarios and the scaling tables to extrapolate the approximate

bounds of constellation variables: constellation type, number of satellites and their arrangement, launch and ground

station spread. Only the Executive Driver, Orbit and Coverage and Data Reduction and Metrics computation module

will be presented in further detail in this paper in the context of Earth imaging missions.

A. User Inputs and Outputs

The initial user input variables that have been identified can be grouped into five categories, which are arranged as

attributes in Figure 2. The column called characteristics defines if the user is needed to input a range, an exact value,

can select among available options and/or provide a text file path with specifications. These represent the types of

input ingested by ED. All of these inputs will be described in more details in a future TAT-C overview publication.

American Institute of Aeronautics and Astronautics

4

Figure 2: Inputs to the Executive Driver from the Users through the GUI

Figure 3 shows an example list of user inputs, as populated in the JSON file that is generated after the user initiates

the search. The values are exact numbers or ranges (listed float values separated by a colon) or the name of a text file

within the user directory. The JSON file sets the requirements of this TAT-C run to a constellation of one to eight

satellites with a specific altitude (710 km) and inclination (98.2°), with no restrictions on outputs. The area of interest

is a customized text file, however the user could have also entered a latitude range like ‘-90:90’. Only primary launch

vehicles from TAT-C’s library (editable file) are to be considered. If the user leaves any field within satellite or

payload specifications blank in the GUI, default values corresponding to Landsat and its ETM+ payload, as a fixed

non-scanning instrument with an imaging FOV, are assumed. The current computer system time is assumed to be the

start epoch with a default mission lifetime of 30 days. The default area of interest is the entire globe, ground station

American Institute of Aeronautics and Astronautics

5

network is NEN, mission director the

government and there are no restrictions

on any of the output values. Only imaging

payloads will be discussed in this paper.

During execution, ED generates a file tree

of results within the user directory, which

can be then be plotted for interactive

visualizations. Figure 4 shows an example

of a file tree, as generated by the ED after

a full TAT-C run. Some of the output

metrics outputted by the ED and RM, as

spatial, temporal and statistical

distributions as seen in the

‘OutputBounds’ section of the JSON file

in Figure 3. Users may also set bounds to

the values of requested output metrics as

‘lowerBound:upperBound’, in which case

the ED will search the tradespace

accordingly. The full list of metrics in the

result will be presented in a future

publication.

B. Executive Driver

The ED is programmed in Python and

starts with reading the inputs in the JSON

file and its associated text files and

forming objects and structures. In the lack

of user inputs, it uses the default values

listed in the previous paragraph. It then

generates DSM architectures for

combinations of design variable values

that satisfy the input requirements, in a

loop over all the variables. It loops over

all possible ground station (GS)

combinations, and for each of those, loops

over the satellite, orbit and payload options. For a given FOV range, it creates multiple, equally distributed FOV

values. For each of those FOV values and a given altitude range, it creates multiple equally distributed values. If the

user has requested for special orbits, the altitude is constrained accordingly. For each of those altitude values and given

the FOV, it calculates the expected swath on the ground and then uses the swath to estimate the minimum and

maximum number of satellites required to achieve the maximum and minimum revisit times, respectively, if specified.

If there are no constraints on revisit or if the satellite range exceeds that specified by the user, the latter is used as

override. If the user has specified constraints on spatial resolution, they are used to limit the maximum effective FOV,

at the given altitude. All such streamlining is performed using rules specified in Section III. For the computed or given

range of satellite numbers, the ED creates multiple equally distributed, satellite number values. For each value, it

computes all possible Walker constellation configurations where the number of planes × satellites per plane = total

satellites. A configuration is defined by the initial RAAN and MA of the constituent satellites. For a given range of

orbital inclination, the ED creates multiple equally distributed inclination values. If the user has requested for special

orbits, the inclination-altitude combination is constrained accordingly. Given an orbital and GS architecture and LV

options, ED’s launch packaging algorithm identifies the possible ways in which the constellation can be launched. A

unique constellation architecture is therefore a combination of GS, LVs, FOV, altitude, satellite number, inclination

and RAAN-TA combination and the initial Keplerian elements and start epoch for its constituent satellites can be

computed.

Figure 3: Example of a JSON file

(TradespaceSearchRequest.json) populated from user inputs in

the GUI

American Institute of Aeronautics and Astronautics

6

The ED creates two folders when generating architectures –

Mono/ and DSMs/. It creates a sub folder under the Mono/

(implying Monolithic spacecraft) corresponding to every unique

satellite in the DSM tradespace. The folders are named as a

function of the indices of their orbit, GS, pointing scheme and

payload. For example, ‘Orb0000_GS01_Pnt000_Pay03’ is

the satellite with the 0th orbital option, 1st GS option, 0th type of

pointing option and 3rd payload option. The specific values

corresponding to each of those options is available within that

folder’s ‘ReductionMetrics.json’ file. For example, the

orbital option is defined by the keys ‘startDate’,

‘startKeplerianElems’, ‘startMass’, etc. and the payload option is

defined by the keys ‘alongAngularScan’,

‘instrumentConOpsTypeCode’, etc. The ED also calculates the

appropriate grid size and propagation step size required per

satellite so that the global points of interest (POI) are Nyquist

sampled, and includes it in the JSON file. There is one

‘ReductionMetrics.json’ file inside each Mono/

subfolder. Two other files – ‘ephemeris.txt’ and

‘angles.txt’ are added by the RM module after the

completion of its run. ‘ephemeris.txt’ contains the state

information per time step and ‘angles.txt’ contains the view

and solar illumination angles to every POI per time step, for every

Mono/ spacecraft folder

The ED simultaneously creates a subfolder under the DSMs/

(implying Monolithic spacecraft) corresponding to every

architecture in the DSM tradespace. The folders are numbered

sequentially for simplicity. The ED initially creates two JSON

files inside every folder or subspace, ‘Manifest.json’ and

‘CostRisk.json’. ‘Manifest.json’ is a list of folder

names inside Mono/ that correspond to the unique satellites,

which make up any specific DSM architecture.

‘CostRisk.json’ contains a long list of all the specifications that the CR module needs to cost any specific DSM.

The specifications are either available readily from the architecture definition and user inputs (e.g. number of orbital

planes, mission duration) or have to be computed by the ED (e.g. maintenance requirements - Section III.C, thermal

requirements, diffraction limited aperture diameter).

Once the above file trees have been populated, the ED issues a command to the RM and OC combined executable

with the user directory path as the argument, to evaluate the performance of all architectures. RM prints out the results

per DSM, within its designated subspace folder, as two files: ‘gbl.csv’ and ‘lcl.csv’. The advantage of separating

out the DSM view from its constituent monolithic views is that orbits of unique satellites do need to be propagated

and coverage computed more than once. Instead, the RM module can permute and combine coverage statistics from

different monolithic views depending on any DSM architecture or manifest. The ED also issues a similar command

to the CR module for costing all architectures. OC prints out the results per DSM, within its designated subspace

folder, ‘CostOutput.json’. The GUI eventually uses these three files per subspace to plot visualizations.

C. Reduction and Metrics

The reduction and metrics or RM module is responsible for simulating every architecture generated by the executive

driver and computing performance of those architectures over mission lifetime. Both the RM and OC modules are

programmed in C++ for improved run time efficiency. Unlike the file-based communication between other module

pairs, RM and OC communicate with each other in memory because OC can generate a very large amount of data and

a file I/O format to the data reduction module would add run time to the very purpose of the data reduction module.

For example, a constellation trade that looks at 1000 architectures for a modest size constellation of 10 spacecraft,

User Directory
├───TradespaceSearchRequest.json
├───InstrumentSpecifications.txt
├───ObservatorySpecifications.txt
├───Landsat_landImages.txt
├───Mono
│ ├───Orb0000_GS00_Pnt000_Pay00
│ │ ├───ReductionMetrics.json
│ │ ├───ephemeris.txt
│ │ └───angles.txt
│ ├───Orb0001_GS00_Pnt000_Pay00

│ ├───Orb0002_GS00_Pnt000_Pay00
│ ├───Orb0003_GS00_Pnt000_Pay00
│ └───....
└───DSMs
 ├───Subspace00000
 │ ├───Manifest.json
 │ ├───CostRisk.json
 │ ├───gbl.csv
 │ ├───lcl.csv
 │ └───CostOutput.json
 ├───Subspace00001
 ├───Subspace00002
 └───.....
Figure 4: Example of the file tree generated

by TAT-C in the user directory after a

successful tradespace analysis run. All

subdirectories in Mono/ and DSMs/ have

files with the same names; they are collapsed

in the interest of space.

American Institute of Aeronautics and Astronautics

7

only 1000 points on the Earth grid, a 1 month simulation time and computing only a few spatial outputs would result

in 485 GB of data.

The RM module traverses every satellite in the Mono/ folder and stores all the satellite specifications, including their

required grid sizes, in memory. Unless the user can provide a specific set of grid points as points of interest, the RM

and OC are responsible for generating a full set of grid points within the user-provided latitude and/or longitude bounds

using the algorithm described in Section II.D and IV.A. RM tasks the OC module to generate the grid point list given

the bounds and the required grid size for Nyquist sampling. Since the Mono/ folder contains all the unique single

satellites, the RM identifies the unique orbits among them. For each unique orbit, the RM tasks the OC to propagate

the satellite one time step at a time (for example, 60 seconds) till the end of the mission. For each step and for each

payload and pointing per unique orbit, the RM tasks the OC to compute and accumulate coverage for the full set of

grid points. RM saves coverage data accumulated per unique orbit, payload and pointing scheme in memory. Once all

the orbits have been propagated and coverage per time step computed, the RM tasks the OC to compute the aggregated

coverage events such that the start and end time for every coverage event is available (in memory) per grid point, per

satellite, per payload and per pointing scheme. By separating the orbit propagation and aggregation steps, the RM

avoids the need to propagate the same orbit multiple times if there are multiple payloads per satellite and saves runtime

significantly. The coverage computation and aggregation are simultaneously performed for all ground station

combinations, per unique orbit only, because communication does not depend on payload or pointing and is assumed

to be established at more than 5° elevation.

The RM module traverses every architecture/subspace in the DSMs/ folder and identifies the Mono/ spacecraft it is

made up of. It then uses the coverage events (stored in memory) for each spacecraft to compute total coverage for all

the grid points and for all ground stations, given a DSM architecture. Finally, it computes all the outputs listed in [a

future publication] per architecture and stores the outputs per point of interest (POI), across all time periods in

‘lcl.csv’ and output values averaged, maxima and minima across all POIs, per time period in ‘gbl.csv’.

D. Orbits and Coverage

The orbits and coverage component, or OC, is responsible for modeling orbital motion and identifying the earth grid

points in view at each propagation step. Orbital models were selected to balance performance and accuracy

appropriate for early design phases. Coverage is computed based on grid points that can be optionally computed via

standard grid spacing algorithms or provided by the user. In this section, we discuss the orbital and coverage modeling

and capability starting with orbital modeling.

OC models orbits using semi-analytic propagation that includes the effects of J2 averaged over a single orbit. For an

orbit under only the influence of an oblate-spheroid, the semi-major axis, eccentricity, and inclination do not exhibit

secular growth and are held constant over a single propagation step in the OC. Mean secular changes in right ascension

of the ascending node, argument of periapsis, and mean anomaly are modeled using well known equations documented

in Vallado2:

�̇� = 𝑛 −
3

4
 𝐽2 𝑛 (

𝑅𝑒

𝑝
)

2

 𝑠𝑞𝑟𝑡(1 − 𝑒2)(3 sin2 𝑖 − 2)

Ω̇ = −
3

2
 𝐽2 𝑛 (

𝑅𝑒

𝑝
)

2

cos (𝑖)

�̇� =
3

4
 𝐽2 𝑛 (

𝑅𝑒

𝑝
)

2

(4 − 5 sin2 𝑖)

Equation 1

Orbits are propagated using osculating Keplerian elements for performance reasons. Care is taken to handle the cases

when orbital elements are undefined, such as for circular and equatorial orbits, by setting the undefined element to

zero and effectively using a smaller set of states (less than 6) in those cases. The coverage utility in the OC employs

a built-in algorithm to generate nearly equal point distributions for a requested number of points. The tool can also

ingest a custom point definition. To improve performance, the coverage utility performs a feasibility test to determine

if line-of-site coverage is possible before analyzing sensor coverage. Current functionality assumes nadir pointing

conical sensors, however the design is general and development for more general sensor masks is already under way.

American Institute of Aeronautics and Astronautics

8

III. Preliminary Sizing for Streamlining the Tradespace

A full factorial representation of all combinations of values that the constellation design variables can take between

the user-supplied ranges can sometimes generate thousands of architectures. As described in previous literature for

formation flight1, it is valuable to attempt to streamline the tradespace by limiting the variable range bounds as a

function of the previous level of variable values. For example, a satellite at a 1000 km orbit with a 130° FOV is the

same as the satellite with a 120° FOV because the satellite is high enough that angular spread limb-to-limb is lower.

Limiting the effective FOV before generating the architectures can reduce the number of architectures or make their

design values more reasonable.

The most critical design variables for the given list of outputs will be described in a future TAT-C publication; based

on those variables, we have framed approximate rules to map the dependence of the outputs on the variables, such that

the variable ranges can be restricted. Such rules are used to down-select constellation architectures from a full factorial

list, such that only those expected to meet user-defined constraints are sent to the full simulation with complex OC,

RM and CR models. Streamlining rules for a few spatial and temporal metrics will be presented below. Our

simulations also provide analytical rules for approximate maintenance requirements (fuel and schedule) to operate any

constellation architecture for a given lifetime. This allows first-order estimation of maintenance costs without having

to calculate exact maneuvers within the simulation and improves computational efficiency when calculating trade-

offs for thousands of architectures.

A. Spatial Metric Dependence on Constellation Design Variables

At any given altitude, one of the largest limits of maximum FOV is the maximum spatial resolution or ground sample

distance (GSD) allowed. Even if the user-defined sensor has a wide angle FOV, only those pixels in the retrieved

image that satisfy the maximum resolution will be useful. Thus, the effective FOV is limited by the GSD limits. The

off-nadir GSD, at an off-nadir pointing angle of θ, for a sensor FOV and altitude H is given by the following equations.

[𝑥1, 𝑦1] = 𝑝𝑖𝑥𝐸𝑑𝑔𝑒(𝐻, 𝜃 − 𝐹𝑂𝑉/2)
[𝑥2, 𝑦2] = 𝑝𝑖𝑥𝐸𝑑𝑔𝑒(𝐻, 𝜃 + 𝐹𝑂𝑉/2)

𝐺𝑆𝐷 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)22

Equation 2

The x and y coordinates of the pixel edge can be

computed from simple geometry and using the

negative root (for positive values) of the resultant

quadratic equation. In the equations below the pixel

edge coordinates, x and y, are represented as a

function of the altitude H and off-pointing angle ψ.

Ψ is equal to 𝜃 − 𝐹𝑂𝑉/2 and 𝜃 + 𝐹𝑂𝑉/2 in

Equation 2- first and second, respectively.

𝑥 = −𝐵 − √𝐵2 − 4 ∗ 𝐴 ∗ 𝐶
2

2 ∗ 𝐴
⁄

𝑦 = 𝑥 ∗ tan Ψ

𝐴 = tanx2 Ψ + 1

𝐵 = −2 ∗ (𝑅𝑒 + 𝐻)

𝐶 = (𝑅𝑒 + 𝐻)2 + 𝑅𝑒2

Equation 3

Equation 2 and Equation 3 can be used to calculate

the GSD distortion of any off-nadir pixel and

compared to the nadir pixel (𝜃 = 0). For example,

the GSD at maximum off-nadir for 8 nadir-looking

GSDs (30m to 100m) is shown in Figure 5, as

various colors, and as a function of the half FOV of

the sensor. While the GSD fall off is fairly flat for

the first 10°-20°, it rises sharply for wider FOVs. A 100 m pixel (upper blue) expands to 200 m at the edge of a 40°

FOV image while a 30m pixel (lower blue) expands to 50+m at the edge of the same sensor. If the user prefers the

 Figure 5: The distortion of ground sample distance (GSD)

for the ground pixel at the longest slant distance within

the sensor FOV, as a function of half FOV of the sensor

(X-axis) the nadir-viewing GSD (colors). The red box

indicates the section that is enlarged in Figure 6-left.

American Institute of Aeronautics and Astronautics

9

GSD to be limited to say, 1 km (marked by a horizontal line in Figure 5, the effective FOV will be limited depending

on the GSD at nadir (which is a function of the sensor instantaneous FOV or iFOV). Zooming into the red box of

Figure 5 (Figure 6-left), where the 1 km line crosses the GSD-curves, shows lower iFOVs (or nadir GSDs) provide

high spatial resolution and thus more effective FOV, when constrained by maximum GSD. The relationships are

different for different altitudes, and ED automatically computes them in its streamlining stage.

Figure 6: Trade-off between ground sample distance at the longest slant distance within the sensor FOV and

sensor half-FOV, as a function of nadir-viewing GSD (left colors) and camera pixel limited nadir-viewing

GSD (right Y axis), over a range of altitudes (right colors). The blue and red circles indicate common points

on the design tradespace.

Figure 6-left shows that given a maximum GSD of 1 km, a 100 m nadir-looking pixel can support an FOV up to 64°

(blue circular marker) while a 30 m nadir-looking pixel can support an FOV up to 68° (red circular marker). ED uses

the above model to restrict the FOV as a function of the sensor iFOV and altitude. If the user does not provide the

sensor iFOV, ED assumes the imager to be a non-moving one supported by a single focal plane array such as one

commercially available on the Hasselblad H6D-100c, 100 MP camera with a pixel pitch of approximately 5 um. The

imager’s FPA and pixel size (50 mm for H6D-100c) restricts the minimum GSD possible for a given image size or

the maximum image size possible for a given GSD, also known as pixel limited imaging. Figure 6-right shows the

minimum GSD possible for pixel limited imaging as a function of the half FOV used to create the image and sensor

altitude. The red and blue circular markers indicate the maximum half FOVs that a 30m and 100m nadir pixel can

support respectively (as computed in Figure 6-left). However, Figure 6-right shows that the minimum GSD that can

be supported by the red and blue designs are 105m and 100m respectively, due to pixel limitations. In other words,

the 100 MP camera will only be able to image at a 105 m resolution at nadir, if it is required to image up to 68° of the

flank. Therefore the red design does not close, and will not be provided as a feasible architecture. The blue design

does close at 100m of nadir GSD and 1km of 64° of off-pointing GSD, and is a viable architecture. Based on the above

models, the FOV for an imager at 450 km stands restricted to 64°, unless the user provides an iFOV override. Such

streamlining models can be applied to all altitudes or design levels.

 Hasselblad’s commercially available standard is also used to check the validity of the FOV to iFOV ratio provided

by the user. If the ratio is more than 10000, ED checks for spacecraft scan rate (to ensure that the image is taken by a

scanner like MODIS) and if not scanning, will warn the user that multiple FPAs will be needed to support an image

of that size.

American Institute of Aeronautics and Astronautics

10

B. Temporal Metric Dependence on Constellation Design Variables

The maximum and minimum number of satellites can be, very approximately, computed from the swath or an orbital

sensor, its altitude and the required revisit time. If the user has specified the range of satellite number desired, those

values will override these computations, if they lie outside the computed bounds. Swath (S) can be calculated from

the Earth centric angle (λ), which depends on altitude (H) using the equations below. Re is the radius of the Earth.

𝑆 = λ ∗ Re

λ = 90 − η − ε

ε = cos−1
sin(η)

sin(ρ)

ρ = sin−1
Re

Re + H

Equation 4

Number of satellites (N) can be computed as the rounded

off ratio between the total orbital period (P) and the time

it takes for the Earth to rotate one swath width, if it takes

the required revisit time for the Earth to rotate entirely.

The equations for this computation are:

𝑃 = 2 ∗ 𝜋 √(𝑅𝑒 + 𝐻)3

𝐺𝑀⁄
2

𝑁 = 𝑐𝑒𝑖𝑙(𝑃 ∗ 2 ∗ 𝜋 ∗ 𝑅𝑒
𝑟𝑒𝑣𝑇 ∗ 𝑆⁄)

Equation 5

Maximum revisit time allowed can be used to calculate

the minimum number of satellites and minimum revisit

time for the maximum number using Equation 5. For example, the Landsat orbital period for a 710 km altitude is

approximately 99 minutes and it is able to perform 14.55 revolutions per day. Each revolution gives two passes over

the Equator - one at the ascending node, one at the descending. Since the orbit is polar circular, each nodal pass covers

101 km of distance along the Equator, and the equatorial coverage per revolution is 202 km. Assuming no swath

overlap, at least 198 revolutions would be required to cover the equatorial circumference of 40074 km. In other words,

the time required to cover the Equator or average revisit at the Equator is at least 13.6 days. For at least daily revisit,

the minimum number of satellites needed will be 1/13.6 ~ 14 satellites.

While the dependencies explained above are currently calculated at run time, the common ones could be stored and

used for streamlining when user variables fall within those values. One such common dependency is that that on the

altitude and FOV variable. Figure 6-right and Figure 7 shows how pixel-limited minimum GSD and footprint area (or

swath) depend on both respectively. Any given combination of design variable values - altitude and FOV - in the

architecture tradespace, can be deemed feasible (or not) for any user GSD, swath or satellite requirement if they lie

within (or out of) the bounds of the curves in the aforementioned figures, without the need of any further calculations.

If infeasible, the design variable value bounds can be changed accordingly.

C. Maintenance Predictions for Constellations

In Low Earth Orbit (LEO), the major disturbances to be accounted for are atmospheric drag and J2 effects due to a

non-spherical Earth. If these disturbances act on the different satellite orbits differently, it may cause the orbits to drift

apart and eventually break the formation. ED computes required constellation maintenance analytically as a function

of corrections against atmospheric degradation and relative J2 effects. Atmospheric drag causes the orbit’s semi major

axis, eccentricity, velocity and period, to change. For a near-circular orbit, SMA and velocity change per orbit is:

∆a = −2π(CDA m⁄)ρa2

∆V = π(CDA m⁄)ρaV

Equation 6

where (𝐶𝐷𝐴 𝑚⁄) represents the ballistic coefficient of the spacecraft, 𝜌 the atmospheric density of the atmosphere at

any given altitude, and 𝑎 and 𝑉 the baseline semi-major axis and velocity of the satellite respectively. If satellites in

the same formation have different ballistic coefficients or are at different altitudes, it will cause their orbits to decay

Figure 7: Dependence of the footprint area as a

function altitude (color) and the FOV of a simple,

conical sensor. Similar dependencies are also

available for swath (𝑺 = √𝟒 ∗ 𝑨𝒓𝒆𝒂/𝝅𝟐
).

American Institute of Aeronautics and Astronautics

11

in different ways. We simplistically calculate the drag area (A) of the satellite as its volume^(2/3) and use a standard

database for atmospheric density as a function of altitude. The database is stored as a text file and can be changed if

the user wants to use a different version.

Relative orbital decay due to J2 is assume to be 0.1° of relative mean anomaly change between satellites in the same

orbit and negligible between RAANs for different orbits, based on previous work3. We are not correcting for orbital

drift due to inclination and altitude differences so far, due to the large amounts of fuel needed. Mean anomaly draft

can be corrected within one to five days, depending on how much fuel the user is willing to spend. We assume one

day of correction time to minimize loss of science performance for too long. The trade-off between correction time

and ΔV (or fuel) required is calculated as function of the number of phasing orbits required for the correction3. A

small orbit raise will need more phasing orbits but lesser fuel to correct a relative MA drift.

IV. Case Studies of Streamlined Tradespace Analysis

This section will describe results from two different use cases of Earth imaging. Only two temporal metrics –

revisit time and time to achieve full coverage – have been discussed below as examples. All figures displayed in this

section have been created on MATLAB (independently from the TAT-C tool), using RM’s output files (‘gbl.csv’

and ‘lcl.csv’) per DSM architecture. In the use cases below, we compare only Uniform Walker Constellations,

where all the satellites have the same altitude, inclination and equal satellites per plane, and Ad-Hoc Constellations

(e.g. Planet Labs). For example, a uniform Walker constellation with 8 satellites in a specific altitude/inclination can

be arranged in four ways (in 1, 2, 4 or 8 planes with equal satellites each). The ED may also be set to generate Non-

Uniform Walker constellations (combinations of uniform Walker constellations over different altitude, inclination and

possibly satellites per plane), Ad-Hoc Constellations where satellites are launched as per the next available launch

option from launch database and Precessing constellations where satellites are dropped off by a single LV at

differential altitude and inclination causing them to disperse over time for a large RAAN coverage.

A. Example Trades across Constellation Architectures – Landsat Use Case

The Landsat user case simulates a constellation of satellites very similar to the current Landsat 8 – circular orbit with

an altitude of 710 km and inclination of 98.2°. Landsat has a pushbroom imager4 that collects one sample from each

30-m resolution detector every 4.237 ms (236 times per second). The detectors integrate for 3.6 milliseconds of this

sampling interval. While it takes 24 s to cover every ~185 km image, the Landsat imaging team processes about 30s

of data to account for buffering and scene-to-scene overlap. Simplifying this concept of operation into a simple fixed

sensor, we can assume a conical sensor of FOV 15° to provide the same imagery as Landsat-8. The number of satellites

in the constellation was restricted between 1 and 8. The satellite and instrument specifications were obtained from the

Landsat handbook – http://landsat.usgs.gov//l8handbook.php, and the area of interest was defined by a text file

containing the lat-lon coordinates of the 16986 Landsat images located on land or coastal regions, as obtained from

the United States Geological Survey (USGS).

The user inputs to ED for this validation case have been listed as the JSON file in Figure 3. Alternatively, if the user

wanted to explore a larger range of altitudes, he/she could have set the altitude range to “LEO” and special orbits to

“SSO”, the system would then have generated a full range of multiple altitudes between 300km and 1000km and for

each altitude, computed the inclination for the SSO constraint. ED took 7.7 hours of run-time on a Mac OS X version

10.10.5 with a 2.5 GHz processor and 16 GB of 1600 MHz memory, to run this scenario. It generated 28 constellation

architectures for the above use case, 20 of which were uniform Walker constellations and 8 were Ad-Hoc

constellations. The latter had one architecture per satellite number, because ED picked N Planet Labs slots randomly

for N satellites. More architectures could have been possible however the temporal statistics were found to be very

similar for the full factorial version, thus only one architecture per satellite number has been plotted as a representative

example. RM and OC propagated 60 unique orbits for the 28 architectures.

http://landsat.usgs.gov/l8handbook.php

American Institute of Aeronautics and Astronautics

12

Figure 8: Average (left) and maximum (right) Revisit Time over all the Landsat images as a function of

constellation type and number of satellites, all in the Landsat orbital altitude and inclination

Figure 9: Spatial distribution of maximum revisit time over all the Landsat images for 8 satellite

constellations arranged in the best (left) and worst (right) case scenarios in Figure 8, with 2 and 1 planes

respectively. Note the difference in the color scales, to show the full breadth of the variation.

Outputs from the RM module will allow the user to see trades between pairs or triplets of design variables, performance

metrics and costs. Figure 8-left shows a triplet of design variables and how they relate to each other where revisit is

plotted against satellites, with type in different colors. Average revisit time is the average time it takes for the

constellation’s conical sensors to revisit any and all of the 16988 Landsat image coordinates. Polar images are revisited

more frequently than equatorial images and this metric calculates a simple mean across all of them. Walker

constellations revisit more frequently than Ad-Hoc constellations because of their uniform arrangement, but are

costlier to launch and maintain (in terms of fuel), as will be seen in performance –cost trade-offs. Users will be allowed

to easily change the metrics being plotted. Figure 8-right shows the trade between number of satellites, maximum

American Institute of Aeronautics and Astronautics

13

revisit time (across all images) and constellation type, also plotted from the ‘gbl.csv’ files. As before, the maximum

time drops with increasing number of satellites for Walker constellations and also changes when the same number of

satellites are arranged differently. The maximum revisit time for Ad-Hoc constellations stays approximately constant

from 1 through 8 satellites because of their non-uniform distribution around the globe (unlike Walker). For example,

for this use case, the ad-hoc constellations had 5 satellites in the ISS orbit and 3 in polar orbit, randomly distributed

in RAAN and MA depending on when secondary launches were available and without any maintenance. These results

are in keeping with the Planet Labs theory that if there are a large number of satellites in orbit, revisit statistics are not

significantly impacted by orbital spread within the same plane. Therefore, they try to launch as frequently as possible

with any secondary launched available.

 For any of the architectures plotted in the pair-wise or triplet-wise design trades such as Figure 8, the output ‘lcl.csv’

files allow users to select one or many of them, and see the spatial (globally) or temporal (time series through

performance period/s) distribution of the selected metric. is the spatial distribution of maximum revisit time for the 8-

satellite architectures that produced the minimum (best) and the maximum (worst) of that metric, as plotted from the

‘lcl.csv’ files of those architecture folders within DSMs/. The architectures have also been circled in

Figure 8-right. The best results are provided by 2 constellations, thus there are overlapping markers, and only one is

chosen for the spatial plot. Equatorial regions are revisited less often than the poles and are the ones that suffer the

most when a constellation is not spread out.

Figure 10: Spatial distribution of average revisit time (left) and time required to cover each image (right) over

all the Landsat images for 8 satellite constellations arranged in a single plane, in the Landsat altitude and

inclination. Note the difference in the color scales, to show the full extent of the variation.

Similar spatial distribution plots can be made for any of our metrics, as computed and saved in ‘lcl.csv’ by the RM

module. For example, Figure 10-left shows the spatial distribution of average revisit time across all Landsat images

for the most frequently revisiting Landsat constellation in the evaluated tradespace (containing 8 satellites in a single

plane). The average revisit time of the 2 plane constellation was found to be approximately equal to the maximum

revisit time of the 1 plane one. The best constellation for one type of metric may not be the best for the others. Figure

10-right shows the time to access all Landsat images for the first time by a constellation of 8 satellites arranged in 8

planes, which does better than the single plane constellation in terms of this metric. Eight planes spatially distributed

the satellites much more than a single plane, therefore making the system more responsive. However, response revisit

is better in the single plane case. Figure 10-right also shows clearly the orbital path of the 8 planes, as they cover the

required image coordinates.

American Institute of Aeronautics and Astronautics

14

B. Example Trades across Constellation Architectures – Wide-Angle Radiometer Use Case

While the Landsat use case had a narrow FOV sensor at a specific orbit and directed toward specific geographic

locations of the Earth, the wide angle radiometer use case simulates a constellation of wide FOV sensors within a

specific altitude range (JSON: ‘"AltitudeRangesOfInterest": "500:700"’), across varying inclinations (no constraint in

JSON, implying orbits between 0-90°) where the points of interests are the tropical latitudes (JSON:

‘"AreaOfInterest": "-40:40"’ implying a latitude constraint). As mentioned in Section II.A.3, setting bounds for an

area of interest will cause the RM module to request the OC module to populate an evenly spaced grid between the

requested bounds, with a requested grid size. The satellite numbers are restricted between 8 and 12 because

radiometers are typically used for weather monitoring5, which requires frequent revisit times, and the total simulated

time to one week. The sensor field of view is set to 130°.

ED took 40 minutes to run this simulation scenario and produced 233 DSM architectures in the results, of which 228

architectures correspond to uniform Walker constellations. RM and OC propagated 1353 unique orbits. 2000 grid

points were generated between the required latitudes. The results from this use case demonstrate the utility of the four-

way trading functionality, as plotted using the information outputted in the ‘gbl.csv’ files across all architectures.

Figure 11 shows the tradespace between the maximum revisit time (performance metric) and number of satellites

(design variable), separated by percentage POI covered (performance metric) and constellation type (design variable)

- Figure 11 left – or orbital inclination (design variable) - Figure 11 right. Revisit time and satellites have been plotted

on the axes, POI covered as a partition and type or inclination in color. While these plots are examples only, they

demonstrate the utility of exploring the tradespace of constellations for a particular mission. Figure 11-left clearly

shows that, unlike the Landsat use case, the type of constellation is not the most important negative influence on

maximum revisit time. In fact, the ad-hoc constellations are able to provide to provide the least revisit time among all

architectures that guarantee 100% coverage of the area of interest within the 7-day performance period. As a further

example of trades using ‘gbl.csv’ information, Figure 11-right shows that maximum revisit time is most

significantly affected by orbital inclination. Equatorial orbits provide the fastest revisit, but at the cost of coverage.

By toggling the performance metric and design variable in the plots, using the static information in ‘gbl.csv’, it can

be seen that the equatorial orbits cover between55.9% to 67.6% of the area of interest between the 40° parallels. Mid-

inclination to polar orbits provide decreasing benefits to maximum revisit time, as seen in Figure 11-right.

Figure 11: Maximum revisit time over all 2000 grid points as a function of number of satellites, when

arranged by constellation type (left) and by inclination of the orbits (right)

Results from the RM when plotted in Figure 11 also shows that there is no significant advantage to revisit statistics,

in increasing the number of satellites beyond 8. The quickest maximum revisit, while maintaining 100% coverage of

area of interest, is 8.83 hours, using 8 satellites in Walker format, and is 8.73 hours, using 12 satellites. If a user wants

100% coverage
100% coverage

American Institute of Aeronautics and Astronautics

15

to check for the knee in the curve or the point at which maximum revisit time begins to saturate with respect to satellite

number, he/she may simulate a larger range of satellite numbers and re-plot the same graphics. When a re-run with 1-

7 satellites was simulated, we found a knee for maximum revisit to occur at 4-5 satellites.

V. Initial Results Validation

Results from the ED, OC and RM modules have been validated against the results obtained from a previously

developed MATLAB-driven Systems Tool Kit6 system, using the same set of user inputs. The MATLAB-STK system

uses MATLAB to loop over all possible architectures, given user inputs and then STK’s J2 propagator to propagate

the orbits and compute coverage across all grid points1. The access information over all satellites per DSM, are stored

as .cvaa files with filenames defining the architecture variables. The system uses MATLAB to post-process all the

.cvaa files and compute the metrics defined in [a future publication]. The temporal metrics ‘revisit time’ and ‘time for

global coverage’ over several architectures corresponding to the Landsat satellite and orbits, as generated by ED, RM

and OC will be compared to the same metrics generated by the MATLAB-STK system as a validation scenario. As

before and only for validation purposes, all figures displayed in this section have been created on MATLAB, using

RM’s output files (‘gbl.csv’ and ‘lcl.csv’) per DSM architecture.

A. Validation of Grid of Points

The grid point utility supports both internally

computed points and user defined points thus

allowing nearly equal point spacing on the grid and

points for custom science targets. The algorithm to

place near-equally spaced points was termed the

“Helical” algorithm by Schiff and Mailhe[7] as the

points look much like what is obtained by peeling an

orange in one piece. Preliminary grid point

validation was performed by visual inspection of

points on the sphere, and by verifying that the nearest

neighbors of all points are approximately the same

angular separation from each other.

Results from RM/OC for grid point generation, given

a grid size and latitude/longitude bounds, matches

results from STK’s grid point generation very well.

When provided a grid size of 10°, 5° and 1° for a full

Earth grid, RM generated 412, 1650 and 41252

points respectively. In comparison, STK generated

410, 1652 and 43424 points respectively. ED thereby

demonstrated less than 1% of grid spacing error

globally. Figure 12 compares the global grid

generated by both software for a 5° grid size.

B. Validation of Orbit Propagation

Orbit propagation validation was performed by comparing final states for representative orbits propagated in STK

and the current OC module. Several orbits including polar, and equatorial orbits and circular and elliptic orbits were

propagated in both tools. Final states from orbital propagation agreed on the order of meters.

C. Validation of Temporal Metrics across Constellation Architectures – Landsat Use Case

The Landsat use case in Section IV.A has been selected as the validation use case. Tradespace analysis of multiple

Landsats has been performed and published using the MATLAB-STK system1, therefore serves as a reliable

benchmark for validation. Moreover, since the Landsat use case contains the exact coordinates of the grid points within

the area of interest, instead of RM/OC creating the grid, the comparison below eliminates any differences between

STK and RM due to disparity in grid points.

Figure 12: Comparison of the grid spread generated by

RM/OC and STK for a 5° grid size at the Equator

American Institute of Aeronautics and Astronautics

16

As mentioned before, the orbital altitude and inclination of all constellation satellites were restricted to the current

Landsat values. Figure 13 shows the comparison of revisit metrics obtained using RM and MATLAB-STK using the

J2 propagator. STK’s results are assumed to be a

golden standard because of its high standing in the

orbital mechanics community, utilization in several

mission designs and decades of commercial

success. The curves in the figure indicate average

revisit time, and the vertical bars indicate the

distance between minimum and maximum revisit

time. While our initial validation effort shows some

difference between results from the two tools, the

difference is mainly in the maximum revisit times

of a few architectures. In contract, the average

revisit curves from both tools are very close. Also,

the relative ranks of the 20 architectures with

respect to revisit time is approximately the same for

both the tools and the relative difference between

revisit times across the architectures (note the shape

of the maximum and average curves in blue vs. red)

is also very similar. The difference in the curves can

be due to the lower fidelity models of OC in

computing coverage for conical sensors, as

compared to STK.

As a secondary check, the circled 8-satellite and 12-

satellite cases in Figure 11-left were run using the

MATLAB-STK tool and the same grid size. The

maximum revisit times for both cases was found to

be 10.4883 hours, almost 2 hours different from the

8.83 hours and 8.73 hours obtained from ED, RM and OC respectively. However, when the single satellite revisit

numbers were tallied and the maximum revisit times matched up exactly. Future work entails improving the fidelity

and performance of the RM and OC modules so that the coverage numbers match the MATLAB-STK tool as closely

as possible, for all selected use cases, or that the differences are predictably accounted for.

D. Comparison of Processing Time

When making these trades, speed is our utmost concern, without compromising on the architecture differentiating

accuracy of the results. While our lower fidelity models have caused some differences between our results and

commercial software results, we have been able to demonstrate significantly faster run time. While we recognize that

STK is not a tradespace analysis tool, it has been used in this paper as a validation comparison. The Landsat use case

took STK more than 10 days to propagate all the unique orbits required for the 20 Walker constellation architectures

and MATLAB 4.5 to process the STK access reports to generate results in the same format as that provided by our

algorithm. In comparison, our algorithm took less than 15 hours to run the same tradespace analysis scenario, therefore

showing 16 times difference in speed. We expect some increase in run time as we increase the fidelity of our coverage

models to match STK and MATLAB’s result accuracy, however the difference in run time is expected to remain at an

order of magnitude difference. We attribute the difference in speed to the fact that STK is a very visualization heavy

tool therefore takes a lot of time loading and unloading graphics. The time taken ED, RM and OC to run tradespace

analysis is dependent on the size of the inputs. If 2000 grid points instead of ~17000 were used and a 130° FOV instead

of 15°, such as the radiometer use case in Section IV.B, the analysis takes only 40 minutes in spite of the hundreds of

architectures. Further, if the satellite number were restricted to only five, the analysis finishes in less than 10 minutes.

Our system is therefore more suitable for rapid tradespace generation and evaluation, such as those common in concept

maturation and Pre-Phase A of mission design.

Figure 13: Revisit Time over all the Landsat images as a

function of number of satellites in the Walker

constellation, computed using the ED/RM/OC (blue)

system vs. our MATLAB-STK system (red). The curves

show the average values while the error bars show the

minimum and maximum values.

American Institute of Aeronautics and Astronautics

17

VI. Discussion and Future Work

This paper introduces the Executive Driver (ED), Orbit and Coverage (OC), Data Reduction and Metric

Computation (RM) modules for the future Trade-space Analysis Tool for Constellations (TAT-C, [9]). TAT-C will

facilitate DSM Pre-Phase A investigations and by allowing the users to optimize DSM designs with respect to a-priori

science goals. We have presented the overall structure of these 3 modules, their functionality and information flow

between them, as well as how they will support end-to-end simulation of TAT-C. We have also shown the value of

easily modifiable user inputs and results, in the context of two use cases – a constellation of Landsat-like sensors and

a wide angle radiometer constellation. Finally, a few results from a combination of those 3 modules are very

preliminarily validated against a previously published MATLAB-STK tool. We intend to continue improving the

fidelity of the RM and OC modules such that their results match those from STK more closely, while maintaining the

order of magnitude difference in the speed of tradespace analysis. Other future work includes adding heterogeneous

constellations and precession type constellations into the architecture types, including the use of scaling tables within

the ED where partial outputs can be processed to inform further tradespace and completing the instrument concept of

operations for non-imaging missions (e.g. occultation).

Acknowledgments

The authors acknowledge funding from the NASA Earth Science Technology Office (ESTO) Advanced

Information Systems Technology (AIST) Program. We thank the rest of the AIST team in this project for very useful

discussions on this topic - Matt Holland, Olivier de Weck, Philip Dabney and Veronica Foreman.

References

1. Nag, S., LeMoigne, J., D. W. Miller & De Weck, O. L. A Framework for Orbital Performance Evaluation in Distributed

Space Missions for Earth Observation. in IEEE Xplore, Aerospace Conference 2015 (2015).

2. Vallado, D. A. Fundamentals of astrodynamics and applications. 12, (Springer Science & Business Media, 2001).

3. Nag, S., Gatebe, C., Miller, D. W. & De Weck, O. L. Effect of Satellite Formation Architectures and Imaging Modes on

Global Albedo Estimation. Acta Astronaut. (2016). doi:10.1016/j.actaastro.2016.04.004

4. Irons, J. R. & Masek, J. G. Requirements for a Landsat data continuity mission. Photogramm. Eng. Remote Sens. 72, 1102

(2006).

5. Norton, C. D. & Pasciuto, M. P. NASA ESTO’s strategic investments in space-based radiometer technology and flight

validation. in SPIE Defense+ Security 908329–908329 (International Society for Optics and Photonics, 2014).

6. Systems Tool Kit. Analytical Graphics Inc. Available at: http://www.agi.com/products/stk/modules/default.aspx/id/stk-

free. (Accessed: 4th March 2013)

7. Schiff, C., and Mailhe, L., “INDRA/COV: A New Tool for Optimization of Constellations Coverage Statistics,” Proceedings

of 16th International Symposium on Space Flight Dynamics, NASA, 3–7 Dec. 2001.

